

Hydraulics Structures Civil Engineering Department Tikrit University

Wesam Sameer Mohammed-Ali Ph.D., P.E., M.ASCE, M.AWRA

Design of Floors

Water seeps under structures causes of failure of this structure

Seepage Force

Hydraulic Gradient (*i*) =
$$\frac{H}{L.W.}$$

Design of Floors

Water seeps under structures causes of failure of this structure by:

> Piping

Rupture of the floor due to uplift pressure

Failure by piping

Water seeps under the base of the structure, and the flow line emerges out at the D/S end of the floor. When the exit gradient ($G.E = \frac{1}{F.S}$) exceed the specific limit (critical limit) for the soil, the surface soil starts boiling and is washing out a way to be percolating water with removed surface soil. The process of erosion causes piping.

Treatments:

- Increasing the depth of sheet pile at U/S and D/S
- Increasing the length of the floor

Rupture of the floor due to uplift pressure

If the uplift pressure is counterbalanced by the concrete floor's weight above it, the floor will fail by rupturing part of this floor.

Treatments:

- Provide floor of sufficient length.
- Increase the upstream pile in order to decrease the uplift pressure.
- Increase the thickness of the floor.

$$t = \frac{h}{G-1} * \frac{4}{3}$$

Bligh's Creep Theory

Bligh designated the length of travel as a "Creep Length" and is equal to the summation of the creep's horizontal and vertical length.

```
Creep line = L.W. = 2d_1 + b_1 + 2d_2 + b_2 + 2d_3
```

```
= 2 (d_1 + d_2 + d_3) + b_1 + b_2
```

= 2 * (Vertical distance) + Horizontal distance

Safety Against Piping

The hydraulic gradient (*i*) must be kept under a safe limit in order to ensure safety against piping

Hydraulic Gradient (*i*) = $\frac{H}{L.W.}$

H = U/S Water Level - D/S Bed Level

The safe limit of soils is given in the following table:

No.	Soil type	С	Safe limit of hydraulic gradient
1	Fine sand	15	1/15
2	Coarse-grained sand	12	1/12
3	Sand mix with boulder and gravel, loam	5 - 9	1/5 - 1/9
4	Light sand and mud	8	1/8

Safety Against Uplift Pressure

Hydraulic Gradient (*i*) =
$$\frac{H}{L.W.}$$

L.W.= $2d_1 + 2d_2 + 2d_3 + b_1 + b_2$ $t = \frac{H}{G-1} * \frac{4}{3}$

 $G = 2.4 \text{ ton/m}^3$ For Concert H = U/S Water Level – D/S Water Level

$$t = \frac{h_i}{G-1} * \frac{4}{3}$$

 $L.W_i = 2d_1 + 2d_2 + b_1 + L$

 $h_i = H (1 - \frac{L.Wi}{L.W})$

Bligh's Creep Theory

Bligh designated the length of travel as a "Creep Length" and is equal to the summation of the creep's horizontal and vertical length.

```
Creep line = L.W. = 2d_1 + b_1 + 2d_2 + b_2 + 2d_3
```

```
= 2 (d_1 + d_2 + d_3) + b_1 + b_2
```

= 2 * (Vertical distance) + Horizontal distance

Safety Against Piping

The hydraulic gradient (*i*) must be kept under a safe limit in order to ensure safety against piping

Hydraulic Gradient (*i*) = $\frac{H}{L.W.}$

H = U/S Water Level - D/S Bed Level

The safe limit of soils is given in the following table:

No.	Soil type	С	Safe limit of hydraulic gradient
1	Fine sand	15	1/15
2	Coarse-grained sand	12	1/12
3	Sand mix with boulder and gravel, loam	5 - 9	1/5 - 1/9
4	Light sand and mud	8	1/8

Safety Against Uplift Pressure

Hydraulic Gradient (*i*) = $\frac{H}{L.W.}$

H = U/S Water Level – D/S Bed Level L.W.= $2d_1 + 2d_2 + 2d_3 + b_1 + b_2$

 $t = \frac{H}{G-1} * \frac{4}{3}$

 $G = 2.4 \text{ ton/m}^3$ For Concert

$$t = \frac{h_i}{G-1} * \frac{4}{3}$$

L.W_i = $2d_1 + 2d_2 + b_1 + L$ $h_i = H (1 - \frac{L.Wi}{L.W})$

Example: A regulator was constructed on a canal with the following site information:

- 1. Find the regulator gate width S_w
- 2. The flow under the Regulator's gate is (free flow) when passing the design discharge with flood conditions. *Calculate the velocity of the flow through the gate opening*. Assume $S_w = 6 \text{ m}$
- 3. Calculate the thickness of the floor at point A using Bligh's Theory. Assume $(S_w = 6 \text{ m})$
- 4. *Check is this structure safe against piping* if the safe limit of the Hydraulic gradient of soil under this structure is (i = 1/12)

\succ <u>Check C</u>

C = 0.6 + 0.08 (5.673) > 0.92. Thus, use C=0.92 and recalculate the new value of S_w

 $45.57 = 0.92 \text{ S}_{\text{W}}(3) \sqrt{19.62 (0.329)} \qquad \qquad S_{w} = 6.5 \text{ m}$

The area of flow (A) = $W * S_w = 6 * 1.215 = 7.29 \text{ m}^2$.

Thus, the velocity of the flow through the opening $V = \frac{Q}{A}$

$$V = \frac{45.57}{7.29} \qquad \qquad V = 6.25 \ m/sec.$$

 $t_A = \frac{1.034}{2.4 - 1} * \frac{4}{3}$

 $t_A = 0.98 m$

4. <u>Check if this structure is safe against piping</u>

The given safe limit of Hydraulic gradient of soil under this structure is (i = 1/12)

Hydraulic gradient $i = \frac{H}{L.W.}$

H = 36.45 - 33.20 = 3.25m.

Hydraulic gradient
$$i = \frac{3.25}{33} = \frac{1}{10.15} > \frac{1}{12}$$

The structure *is not safe* against the piping failure.

Hydraulics Structures Civil Engineering Department Tikrit University

Wesam Sameer Mohammed-Ali Ph.D., P.E., M.ASCE, M.AWRA